An Estimate on the Heat Kernel ofMagnetic Schr

نویسنده

  • Kazuhiro Kurata
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Gradient Estimates for the Heat Equation on Domains and for an Equation by Perelman

In the first part, we derive a sharp gradient estimate for the log of Dirichlet heat kernel and Poisson heat kernel on domains, and a sharpened local Li-Yau gradient estimate. In the second part, without explicit curvature assumptions, we prove a global upper bound for the fundamental solution of an equation introduced by G. Perelman, i.e. the heat equation of the conformal Laplacian under back...

متن کامل

A ug 2 00 6 Random walk on graphs with regular resistance and volume growth ∗

In this paper characterizations of graphs satisfying heat kernel estimates for a wide class of space-time scaling functions are given. The equivalence of the two-sided heat kernel estimate and the parabolic Harnack inequality is also shown via the equivalence of the upper (lower) heat kernel estimate to the parabolic mean value (and super mean value) inequality.

متن کامل

A Matrix Li-yau-hamilton Estimate for Kähler-ricci Flow

In this paper we prove a new matrix Li-Yau-Hamilton (LYH) estimate for Kähler-Ricci flow on manifolds with nonnegative bisectional curvature. The form of this new LYH estimate is obtained by the interpolation consideration originated in [Ch] by Chow. This new inequality is shown to be connected with Perelman’s entropy formula through a family of differential equalities. In the rest of the paper...

متن کامل

Heat kernels on manifolds, graphs and fractals

We consider heat kernels on different spaces such as Riemannian manifolds, graphs, and abstract metric measure spaces including fractals. The talk is an overview of the relationships between the heat kernel upper and lower bounds and the geometric properties of the underlying space. As an application some estimate of higher eigenvalues of the Dirichlet problem is considered.

متن کامل

Heat Kernel Estimates for Truncated Stable-like Processes and Weighted Poincaré Inequality

In this paper, we investigate pure jump symmetric processes in R whose jumping kernel is comparable to the one for truncated rotationally symmetric α-stable process where jumps of size larger than a fixed number κ > 0 is removed. We establish sharp two-sided heat kernel estimate and derive parabolic Harnack principle for such jump-type processes. Moreover, we show that bounded functions that ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009